Methods of Evaluation of Limits

IMPORTANT

Methods of Evaluation of Limits: Overview

This topic covers concepts such as Fundamental Methods of Evaluating the Limits in the Form 0/0, Finding Limits Using Factorisation, Finding Limits Using Rationalisation, Finding Limits Using Standard Limits, and Finding Limits Using Substitution.

Important Questions on Methods of Evaluation of Limits

HARD
IMPORTANT

Let a1>a2>a3>>an>1; p1>p2>p3>>pn>0; such that p1+p2+p3++pn=1. Also Fx=p1a1x+p2a2x++pnanx1/x, then limxFx equals

MEDIUM
IMPORTANT

If limx01-cosx.cos2x.cos3xcosnxx2 has the value equal to 253, find the value of n is equal to (where nN)

HARD
IMPORTANT

The value of limx0x6000-sinx6000x2sinx6000 is

MEDIUM
IMPORTANT

The value of limx01+sinx-cosx+ln1-xx·tan2x is

MEDIUM
IMPORTANT

limx0x+ln1+x2-xx3=

HARD
IMPORTANT

limx08x81-cosx22-cosx24+cosx22cosx24

HARD
IMPORTANT

Let n be an odd integer, if   sinnθ = r=0 n b r sin r θ , for every value of   θ , then

HARD
IMPORTANT

Let α be a positive real number. Let f: and g:α, be the functions defined by fx=sinπx12 and gx=2logex-αlogeex-eα.
Then the value of limxα+fgx is ______.

MEDIUM
IMPORTANT

limy0(y-2)+21+y+y22y is equal to___________

EASY
IMPORTANT

limx0logsin7x+cos7xsin3x equals

MEDIUM
IMPORTANT

If fx=sinxcosxtanxx3x2x2x11, then limx0fxx2 is

HARD
IMPORTANT

limx14x-4sinx-1=

HARD
IMPORTANT

Evaluate:limx0eax-1sinbx=

MEDIUM
IMPORTANT

limx3xn-3nx-3=27n, then n=

EASY
IMPORTANT

limx0sinxsinx=

HARD
IMPORTANT

limx 2x-ln2xx lnx+x is equal to

MEDIUM
IMPORTANT

The value of limx0cosx12cosx13cosx12cosx15 is equal to

MEDIUM
IMPORTANT

If x is the greatest integer function, then limx0 x51x4 is equal to 

HARD
IMPORTANT

If limnn2+n+2n2+2n+3n=peq, then p+q is

HARD
IMPORTANT

limx 2x-ln2xx lnx+x is equal to